On a Convex Measure of Drawdown Risk

نویسنده

  • LISA R. GOLDBERG
چکیده

Maximum drawdown, the largest cumulative loss from peak to trough, is one of the most widely used indicators of risk in the fund management industry, but one of the least developed in the context of probabilistic risk metrics. We formalize drawdown risk as Conditional Expected Drawdown (CED), which is the tail mean of maximum drawdown distributions. We show that CED is a degree one positive homogenous risk measure, so that it can be attributed to factors; and convex, so that it can be used in quantitative optimization. We provide an efficient linear program for minimum CED optimization and empirically explore the differences in risk attributions based on CED, Expected Shortfall (ES) and volatility. An important feature of CED is its sensitivity to serial correlation. In an empirical study that fits AR(1) models to US Equity and US Bonds, we find substantially higher correlation between the autoregressive parameter and CED than with ES or with volatility. Key terms: leverage; drawdown; maximum drawdown distribution; Conditional Expected Drawdown; volatility; Expected Shortfall; tail mean; liquidity trap; illiquidity; coherent risk measure; deviation measure; risk attribution; risk contribution; risk concentration; generalized correlation; marginal contribution to risk; optimization; portfolio construction; serial correla-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DRAWDOWN: FROM PRACTICE TO THEORY AND BACK AGAIN forthcoming in MATHEMATICS AND FINANCIAL ECONOMICS

Maximum drawdown, the largest cumulative loss from peak to trough, is one of the most widely used indicators of risk in the fund management industry, but one of the least developed in the context of measures of risk. We formalize drawdown risk as Conditional Expected Drawdown (CED), which is the tail mean of maximum drawdown distributions. We show that CED is a degree one positive homogenous ri...

متن کامل

Risk-Constrained Kelly Gambling

We consider the classic Kelly gambling problem with general distribution of outcomes, and an additional risk constraint that limits the probability of a drawdown of wealth to a given undesirable level. We develop a bound on the drawdown probability; using this bound instead of the original risk constraint yields a convex optimization problem that guarantees the drawdown risk constraint holds. N...

متن کامل

Drawdown Measure in Portfolio Optimization

A new one-parameter family of risk measures called Conditional Drawdown (CDD) has been proposed. These measures of risk are functionals of the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter α, in the case of a single sample path, drawdown functional is defined as the mean of the worst (1 − α) ∗ 100% drawdowns. The CDD m...

متن کامل

A Fuzzy Approach to Mean-CDaR Portfolio Optimization

This paper develops a bi-objective portfolio selection problem that maximizes returns and minimizes a risk measure called conditional Drawdown (CDD). The drawdown measures include the maximal Drawdown and Average Drawdown as its limiting case. The CDD family of risk functional is similar to conditional value at Risk (CVaR). In this paper, the fuzzy method has been used to solve the bi-objec...

متن کامل

Portfolio Optimization with Drawdown Constraints

We propose a new one-parameter family of risk functions defined on portfolio return sample -paths, which is called conditional drawdown-at-risk (CDaR). These risk functions depend on the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter α , the CDaR is defined as the mean of the worst % 100 ) 1 ( ∗ − α drawdowns. The CDaR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014